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ABSTRACT

This paper proposes an algorithm, which is a special implementation of a stochastic
descent technigue, used to solve an optimum digraph-partitioning problem a general
optimum criterion is considered. This kind of optimization problem has to manage with
precedence and feasibility constraints. The proposed algorithm converges with

probability 1 to an optimal solution.

1. INTRODUCTION
In this paper we propose a special implementation of
stochastic descent technique called "Kangaroo" for
solving a digraph-partitioning problem. Stochastic
descent techniques are already used for solving such
problems.
In order to define the "neighborhood” functions,
elementary shift operators are introduced. They
allow an efficient way to meet the partition and the
precedence constraints. The feasibility constraint is
treated implicitly, because the unfeasible solutions
are penalized by the objective function. The
accessibility of any optimal solution from any initial
solution is proved. This is the main property, which
guarantees the convergence with probability | of the
proposed algorithm to an optimal solution.
This algorithm was already used to solve a tasks-to-
workstations problem.

2. PARTITIONING PROBLEM WITH

PRECEDENCE CONSTRAINTS

We consider the set Q = {t;, t3,...,ty} made up of N
elements called tasks and we are looking for a
partition formed by M subsets: W, i=I,... M. We
shall call workstation a peculiar subset.

Some precedence constraints between tasks are
involved by a specific problem. So, the task set is
partially ordered by a precedence relation described
by a digraph G=(Q, U), U< Q x Q. Nodes represent
generic tasks and arrows represent precedence
relations between tasks. An arrow from node n, to
node n, indicates that task n, must be completed
before task n, begins.

The time needed by the workstation W; to perform
the task t; is tj. It is possible that 1; = ; that means
that the workstation W; cannot perform the task t;.
Let P; be the task set assigned to the workstation W;.
Obviously, the sets P, i=1...,M determine a
partition of the task set Q. Such a partitions is
denoted by u:

u={P,, Py...Pyj, with P, cQ.i=1...M

A partition has to meet the precedence constraints,
Le.
Vij i, €0 #J2.withtj, €F; t;, eb

(tjl precedes ti, inG) =i iy,

Obviously, an assignment has also to meet the
feasibility constraint, i.e.
r,]-<oo,Vie{1,...,M},VjePi

A proper partition u meets the precedence and
feasibility constraints. Generally, there are many
proper partitions. One may choose the assignment
that minimizes an objective function f(u) :

min f(u) (1]
u

Two possible optimality criteria are given here after

fiw=t.(w)= max ¥ Tj) 2]
i=1...M jePp,

fow= (3]

where
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Smax =tc(W) 3 §; = Zrij
jeb,

This problem is obviously NP-hard, because it is a
graph partitioning which satisfies the optimality
criterion [1].

One may notice that, if the processing time of a task
tj does not depend on the assigned workstation W,
that is:

T =T

and f(u)=t,(u), we have the same optimality criteria
as for the SMALB problem.

In order to emphasize the generality of the proposed
algorithm, generally in the next sections we shall
not set the objective function.

3. A GENERAL STOCHASTIC
DESCENT TECHNIQUE

An algorithm, which guarantees a global minimum
for our problem, should have an exponential
computational complexity. Hence sub-optimal
solutions are generally preferred to optimal
solutions. That 1s why we propose to use an
approximation technique based on stochastic
descent, called "Kangaroo", inspired by the
simulated annealing method, but having a quite
different searching strategy.

As in the case of simulated annealing, the
"Kangaroo" method is implemented by an iterative
procedure, which minimizes an objective function
f(u). A current solution u of the considered problem
is replaced by a better one situated in its
neighborhood N(u), using a random selection. If a
new improvement is no longer possible, a "jump"
procedure is performed, in order to escape from the
attraction of a local minimum. This procedure can

use a different neighborhood definition N' (u) for the

random jumping.
The "Kangaroo" algorithm is described hereafter.

algorithm Kangaroo
begin
Initialize A;
Choose an initial solution u;
ce 1 u*«u;
repeat
if c<A then descent(u, u*, c) ;
else jump(u, u*, c);
until "stop criteria”;
end |
procedure descent(u, u*, c)
begin

Random generation of v in N(u) ;
Iff(v) < f{u)
then {If f(v)<f{u) then {c « 0 ;
if f(v)<f(u*) then
« v}
U< vi;j}
c¢-c+l;
¢nd descent

procedure jump(u, u*, c)
Random generation of v in N'(u);
If f(u) = f(v) then {c « 0;
ifFR(V) < f(u*) then u* « v}
C <« ctl;
U<« Vv,
end jump;

The parameter A is the maximum number of
iterations without improvement of the current
solution and u* is the best solution found until the
current iteration. The variable ¢ counts the number
of iterations between two improvements of the
objective function.

The stop criterion is either a maximum iteration
number or a bottom bound of the objective function
f().

If some conditions are fulfilled, then the best
solution u* converges with probability 1 to a global
minimum.

4. NEIGHBORHOOD’S DEFINITION
AND PRECEDENCE CONSTRAINTS

The current solution u of the iterative process is a
proper partition. Hence, it must be a partition of task
set Q meeting the precedence constraints described
by the precedence graph G.

The feasibility constraint will be treated implicitly,
because a partition u, which does not meet this
constraint, is penalized by the objective function.

If 7;; = o for some pairs (i, j), we have to choose the
form of objective function such that f(u)=c. Such is
the case with the objective functions [2] and [3]. So,
a non-feasible partition will never be assigned to u*,
but it is accepted as a current solution of the
iterative process, in order to assure the convergence
of the algorithm.

An important advantage of the "Kangaroo" method
is the fact that it works even for objective function
with infinite values. This is not the case, for
example, with simulated annealing method.

The procedures descent and jump use, in principle,
two different definitions for the neighborhoods N(u)
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and N'(u). But N(u) and N'(u) may be the same in
some implementations of the "Kangaroo" algorithm.
Firstly, we shall consider that :

N(u)=N'(u).

Hereafter, we propose a specific definition of the
neighborhoods N(u) and N'(u) for the partition
problem.

When one uses a deterministic optimization
algorithm (like as exhaustive search, dynamic
programming, branch and bound,...), the partition
constraint is the reason of the exponential
complexity. Families of task set, that are not
partitions, are generated as intermediary states and
partition tests are necessary. The proposed
algorithm generates only partitions as intermediary
solutions, because N(u) contains only partitions of
the task set Q. With the notation of section 2, a
partition is:

2000

u={P,, P, PM}-

Let us consider a shift-left operator:
shi

(u 1) ——> (4]
which generates a partition u' when it is applied to a
partition u for a task t. This operator moves the task
t,ePy, i>1 from the set Pj, to the set P-1. If we
denote u'={P",, P'5,...,P"y;} it holds:

Pl =Py ALY, Ph=P, -{1)

P, =P, jori#,-1 and i =i,

If a partition u meets the precedence constraints
and if all the direct predecessors of the task t; belong
to sets P, i<i,, then u' will also meet the precedence
constraints. Moreover, u' is obviously a partition of
Q. If this condition is not met, i.¢. if there is a direct
predecessor of the task t; belonging to P, we
consider that the shift-left operator is not well
defined

Figure 1. Example of precedence graph and partition

For example, an assembly line with 4 workstations
has to process the tasks described by the
superimposed graph presented in fig.{. Let us
consider the assignment corresponding to the
partition

u={P, Py P3, P}

with

P,={0, 1, 2, 3}, P,={4,5 6,7 &},

P;={9 10, 11, 12}, P,={13, 14, 15}.

The task 10 can be shifted left from workstation 3
to workstation 2, because this moving meets the
precedence constraints, i.e. tasks 6 and 7 belong to
workstation 2. The resulting partition is:
u'={{0,123},

{4,5,6,7,8,10},{9,11,12},{13,14,15}},

u'eN(u).

For the task 6 the shift left operator is not well
defined.
In the same way, a shift-right operator,

shr
(u t) —u,

[5]

can be defined as below:

[/ éPiw io<M»' P/io*/:Pwﬂ‘—l u{[j} ’ P'iO:Pia - {lj}

P =P, foriZi,~1andi #i,;

If partition u meets the precedence constraints and
if all the direct successors of the task t; belong to
sets P, i>i,, then u' will also meet the precedence
constraints. Moreover, u' is obviously a partition of
Q. If there is a direct successor of the task f
belonging to P,,, we consider that the shift-right
operator is not well defined.
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From now on, a shift operator is either a shift-left,
or a shift-right operator. To apply such an operator
to a partition u for a task t, one has to verify the
constraints concerning the direct predecessors or
the direct successors of t;. '

The main idea of the proposed algorithm is that the
next solution is obtained from the current solution
by a well-defined shift operator. [f the initial
partition of the iterative process meets the
precedence constraints, then the algorithm will
generate only partitions meeting these constraints,
without additional tests. Hence, this algorithm will
have a weak computational complexity.

In the current partition u, there are several tasks
which can be shifted. The proposed algorithm
forms a list L, composed by these tasks. A task
may be present two times in L,, when it can be
shifted left and right (the both operators being well
defined). The algorithm constructs also the list D,
which contains the index of the corresponding
destination workstation.

For example, if u is the partition illustrated in fig.
1, it holds

L,=[123 4786, 78910 11,10,11,12,13,14]
D,=/[22 2111333222 4,4,4, 3 3]

So, the task L, (k) can be shifted from its
workstation-to-workstation Dy(k), 1< k < card(L,).
The neighbourhood N'(u) is the set of partitions u'
obtained by shifting all tasks belonging to L, :

N = {u] (u, Ly(k)—> v, [<k <card(Ly)]

Nu)=N'(u) [6]
So, to generate a partition u' € N(u) is equivalent
to choose a task in the list L,. The random
selection of the task that will be shifted is done in
accordance with a uniform distribution law.

With the elements described above, the descent
procedure for our assignment problem becomes:

procedure descent_TWA(u, u*, c)
begin

- Construct the list L, of tasks which can be shift
and the corresponding D, list ;

{/possible integration of heuristic elements in order
to reduce the length of L ;

- Random selection of a task t; in L,;

- Construction of the partition v by shifting t; :

(ut;)->v

If {v)<f(u)
then {If f(v)<t(u) then {c<0
if f(v)<f(u*) then u* «
v}
Uue v}
cectl
end descent TWA:

2000
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5. CONVERGENCE OF THE
ALGORITHM

The sertes {u,} of the current solutions in the
iterative process, realized by a particular execution
of the presented algorithm, is a realization of a
Markov chain. At iteration n, u*, is the best-
encountered solution. One may consider the series
{u*,} of the best sofutions of the iterative process:
that is also a realization of Markov chain.

In this section, we shall prove that the stochastic
process (u*,) converges with probability | to a

global minimum. The main point s the
accessibility property of the neighborhood function
N'(u).

Let X be the partition set meeting the precedence
constraint ( i.e. the proper assignment set) and let
Xpmin be the optimal partition set ( i.e. the set of
proper assignments which minimize the objective
function). Obviously, X and X, are finite sets.

Proposition 1 (accessibility): 1f u;, ur € X there is a
finite sequence of tasks ty, f,..., t, such that

shiu;,t;) s shiuy,ty)

i >uUp

sh(upkl,[p)

CHp- PUp ZUSf

where sh(.) is either shl(.) or shr(.) operator.
Notice that the probability of the transfer
mentioned in proposition 1 is not equal to zero,
because the probability of a single transition is
determined by a uniform random selection over a
finite number of possibilities.

Sometimes, the partitions obtained in the iterative
process are not feasible assignments. We must
consider such partitions, in order to assure the
accessibility property of the neighborhood function
N'(u).

Proposition 2: The TWA algorithm with the
neighborhood functions N'(.) and N(.) defined by
equation [6] is convergent with probability | to an
optimal solution.

A very important aspect is the fact that the
convergence  with  probability 1  requires
accessibility in the sense of neighborhood N'(.),
which is used by jump procedure. Hence,
deterministic heuristics may be integrated in
descent procedure in order to guide the search of
an optimum solution. This is equivalent to
modifying the definition of neighborhood N(u)
such that

N(u) < N'(u).

If the property VueX, u e N(u) holds, the
algorithm not only keeps its convergence property
but the convergence speed is improved.
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6. COMPUTATIONAL ASPECTS

The iterative procedure begins with any initial
partition. An implementation of our algorithm was
realized in accordance with the elements presented
before. It is a general variant of the algorithm,
because any objective function can be used.

We can improve the convergence speed of the
partition algorithm by adding some deterministic
heuristics in descent procedure. So, the definition
of the neighborhood N(u) will be modified in order
to guide the search of an optimum solution.
Obviously, the heuristics added in descent
procedure depend on the objective function.

For example, if the objective function is given by
equation [2] or [3], the list L, may contain only the
tasks belonging to the maximum work content
workstations. Intuitively, to decrease the line's
cycle time, one have to shift a task belonging to
such a workstation. In a second variant of the
proposed algorithm, we have implemented this
heuristic. In the same time, the complexity of each
iteration has been improved by reducing the
number of tasks of the list L,. The two variants of
assignment algorithm have been coded in C++ and
executed on a PC workstation.

An example of the objective function's evolution
during the iterative process is presented in Figure
2.

Af(u)

| U\J\}\hﬁu

100

85

70

iteration

Figure 2. Evolution of the cycle time in 100
iterations

We have considered the objective function given by
equation [3]. For the same value of parameter A,
the second variant of the proposed algorithm is
obviously faster then the first one. That means that
a solution with the same value of the objective
function is found, generally, in a smaller number of
iterations. The results presented hereafter are

obtained with this variant of the proposed
algorithm.
Table 1 provides some computational results

obtained for a set of problems whose optimal
solutions are known. When the algorithm finds a

2000
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good solution u, instead of the optimal one u*, the
approximation error is

f(uo )= flu*)

fu*)
Concerning the choice of the number of iterations
without improvement of the objective function, the

computational experience proved that a good value
for A is:

Aza{l}ae {],2}
M

integer less or equal to x)

([x] is the greater

N M K iteration approximation
error

32 8 3 9-17 5.8%

64 16 3 11-34 5.8%

128 16 6 9-164 5.8%

128 16 6 13-304 2.9%

Table I Computational resuits

For all the problems, the second variant of the
algorithm has found the optimal solutions in an
acceptable iteration number. For example, the
optimal solution of a large size problem with 128
tasks, 16 workstations were found in 16394
iterations. But, after up to 164 iterations, the best
solution is at 5.8% from an optimal one.

The tests have proved a good behavior of the
proposed assignment algorithm for real problems
concerning large assembly lines.

7. CONCLUSION

We have proposed an algorithm for solving a
partitioning probtem, whatever the optimal criteria
are. [t is a particular implementation of a stochastic
descent technique.

The definition of the "neighborhood” function
based on elementary shift operations allowed a very
efficient way for treating the partition and
precedence constraints. [f the initial solution is a
proper partition, the test of partition and
precedence constraints i1s no longer necessary.
Because the algorithm manages with objective
functions having infinite values, the feasibility
constraint is treated implicitly. Hence, the
algorithm’s complexity is very good.

The solution space has the property of accessibility
in the sense of "neighborhood" function. The
algorithm converges with probability 1 to a global
minimum. This is not the case with other heuristic
search methods. Its convergence speed can be
improved by adding some deterministic heuristics
in the descent procedure.
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The proposed algorithm was tested for solving
assignment problems for large assembly systems.
We have adopted two objective functions used also
by ALB problem. The resuits have that this
approach is realistic and efficient.
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TRATAREA CONSTRANGERILOR DE PRECEDENTA IN SISTEME
TEHNOLOGICE CU ENEVIMENTE DISCRETE
(Rezumat)

Aceasta lucrare propune un algoritm cu ajutorul ciruia este implementata
o tehnicd stohastici descendenta utilizata in atingerea grafului optim in
problema de partitionare cu criteriu de optim general considerat. Acest tip de
problema de optimizare a fost generatd de constangerile de precedenta si
fezabilitate. Convergenta algoritmului propus este cu probabilitate 1 pentru

solutia optimala.

TRAITEMENT DU PRECEDENCE CONSTRAINTS DANS LES SYSTEMES
DISCRETS TECHNOLOGIQUES D'EVENEMENT
(Résume)

Cet article propose un algorithme qui est une mise en place spéciale d'une
technique stochastique de descente, employé pour résoudre un probleme de
division A de digraphe optimum le critére optimum que général est
considéré. Ce genre de probléme d'optimisation doit contrdler avec des
contraintes de priorit¢ et de praticabilité. L'algorithme proposé converge
avec la probabilité 1 & une solution optimale.
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